第679章 异于常人的怪胎
紫金山脚下的别墅中,徐川沉迷于对黎曼猜想的研究。
虽然说他找到了一条通向弱·黎曼猜想的道路,但最终是否能解决这个问题,依旧是不得而知的。
而且,就算是这条思路有效果,能够继续推进黎曼猜想的临界带,要将其继续缩小和解决,也不是一件容易的事情。
数学家经常把黎曼z函数非平凡零点的实部和虚部分别写成σ和t,把复平面上0<σ<1的竖直条带称为临界带,把σ=1/2的竖线称为临界线。
而早在波恩哈德·黎曼写出“论小于给定数值的素数个数”这篇论文的时候,就给出了黎曼z函数的所有非平凡零点都位于1/2这条临界线上。
后续的数学家在针对性的研究时,因为证明非平凡零点都位于1/2这条临界线太难,才将其扩展0<Re(s)>1,希望能够证明所有的非平凡零点都位于这条临界带上。
关于这点,有意思的是,在黎曼当初给出的论文中其实早就已经给出了准确的答案。
至于原因,或许是因为不屑?觉得这太容易了不配出现在论文上?
亦或许就像是十七世纪提出费马猜想的法国数学家皮耶·德·费马曾在阅读丢番图《算术》拉丁文译本时写下的那句名言一样。
“关于此(此指后世的费马大定理),我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”
在黎曼写的那篇“论小于给定数值的素数个数”论文中,也有不少类似的言语。
很多原本应该有写详细过程的重要地方,最终都被一句‘证明从略’代替了。
否则他所赠送给柏林科学院的论文,也不可能只有短短的八页。
当然,用‘证明从略’这种类似的词来节省论文的篇幅,可以说几乎所有的学者都干过。
包括徐川自己,也曾在自己证明的论文中繁多的简略化计算步骤。
但是不管是他也好,还是其他的数学家也好,使用‘证明从略’这种方法,一般都是用来省略那些显而易见的证明的地方的。
但黎曼不同,他的论文却并非如此,他在那八页论文中所写的那些“证明从略”的地方,有些花费了后世数学家们几十年的努力才得以补全,有些甚至直到今天仍是空白。
就像是后世的学者依旧花费了几十年的时间,才完全的排除掉黎曼函数Re(s)=0以及Re(s)=1这两个区域不存在非平凡零点一样。
包括对临界带的推进,也都是基于此而进行提出和研究的。
如果有人问,压缩临界带,将非平凡零点贴近1/2除了证明黎曼猜想外,还有什么其他好处没。
那数学界会告诉你,后世的素数定理,就是基于黎曼函数Re(s)=0以及Re(s)=1这两个区域不存在非平凡零点被解决后才证明的。
至于素数定理的重要性,想必就不用多说了。
如今涉及计算机安全的网络密码,很大一部分就是基于素数定理而建立的。
除此之外,工业、农业等很多方面也离不开素数。
比如很多高精密的齿轮设计,变速齿轮一大一小两个齿轮之间就和素数有很大关系。简单的来说,就是通过素数设计可以增加齿轮的耐用度,减少机械故障。
当然,对于很多数学家来说,他们研究数学并不是因为数学有多大的应用能力。而是它就在那里。
包括徐川,现在他所研究的黎曼猜想,若要说真的证实了黎曼猜想,会对整个世界造成翻天覆地的变化吗?
其实并不会。
一方面是黎曼猜想一直都被数学界认作为定理在使用。
另一方面,即便是黎曼猜想涉及到密码学等多个领域,要将理论成果化为应用,开拓出各种相关的用途,也需要极其漫长的时间。
而这份时间,是以十年,甚至更长为单位计算的。
比如同是七大千禧年难题的庞加莱猜想、霍奇猜想、NS方程、杨-米尔斯存在性和质量间隙等难题被解决了也有不短的时间了。
尤其是庞加莱猜想,从2003年被佩尔雷曼证明到现在,更是已经超过了20年。但也才堪堪在计算机、医疗、工业等应用起来。
至于后面由徐川解决的三个,除了针对NS方程建立起来了有关于超高温高压等离子体湍流的控制模型外,其他领域的应用,依旧寥寥无几。
数学,就是一门这样纯粹的科学。
很多时候,数学家研究数学并不是为了能有多少的应用,而是在于那一个个美妙的数学公式中隐藏的世间真理!
书房中,徐川开着灯,将手中打印出来没多久的一篇有关于黎曼猜想的论文放到了角落中。
在那边,可以看见已经堆起来近半米的纸张,都是这些天以来他翻阅过。
当然,并不是所有的论文他